
Preprint
UCRL-134259

ROSE: The Design of a
General Tool for the
Independent Optimization
of Object-Oriented
Frameworks

K. Davis, B. Philip, D. Quinlan

This article was submitted to
International Symposium on Computing in Object-Oriented Parallel
Environments, San Francisco, CA, December 7-10, 1999

U.S. Department of Energy

r-l Lawrence

May l&l999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

ROSE: The Design of a General Tool for the Independent
Optimization of Object-Oriented Frameworks

Kei Davis Bobby Philip

May 18, 1999

Dan Quinlan

Abstract

ROSE represents a programmable preprocessor for the highly aggressive optimization of Ct+ object-
oriented frame-xorks. A fundamental feature of ROSE is that it preserves the semantics, the implicit
meaning, of the object-oriented framework’s abstractions throughout the optimization process. permitting
the frameyork’s abstractions to be recognized and optimizations to capitalize upon the added value of the
framework’s true meaning. In contrast, a CS+ compiler only sees the semantics of the C++ language
and thus is severely limited in what optimizations it can introduce. The use of the semantics of the
framework’s abstractions avoids program analysis that would be incapable of recapturing the &men-ark’s
full semantics from those of the C-+-t language implementation of the application or framework. Just
as no level of program analysis n-ithin the C+t compiler n-ould not be expected to recognize the use of
adaptive mesh refinement and introduce optimizations based upon such information.

Since ROSE is programmable, additional specialized program analysis is possible n-hich then com-
pliments the semantics of the framework’s abstractions. Enablin g an optimization mechanism to use
the high level semantics of the framexvork’s abstractions together with a programmable level of program
analysis (e.g. dependence analysis), at the level of the Lamen-ork’s abstractions, alloxs for the design
of high performance object-oriented frameworks n-irh uniquely tailored sophisticated optimizations far
beyond the limits of contemporary serial F0RTR.U 7: C or C++ language compiler technology. In
short, faster, more highly aggessiye optimizations are possible. The resulting optimizations are literally
driven by the frame-xork’s definition of its abstractions. Since the abstractions nithin a kamen-ork are
of third party design the optimizations are similarly of third party design, specifically independent of the
compiler and the applications that use the framework.

The interface to ROSE is particularly simple and takes advantage of standard compiler technology.
ROSE acts like a preprocessor, since it must parse standard C++‘, and its use is optional, it can not
be used to introduce any new language features. ROSE reads standard C++ source code and outputs
standard Ct-l- code. Its use is always optional, by design: so as not to interfere with and to remain
consistent xvith the object-oriented framework. It is a mechanism to introduce optimizations only; adding
language features using ROSE is by design no more possible than within the framework
itself. Importantly, since ROSE generates C i-i- code it does not preclude the use of other tools or
mechanisms that n-ould work with an application source code (including template mechanisms).

1 Introduction

The development of object-oriented frameworks has permitted the centralization of expertise and its reuse
by numerous people, research groups, institutions and industries. The expertise represented within object-
oriented frameworks has ranged from support for comples geometries and grid generation to the introduction
of advanced numerical algorithms (such as adaptive mesh refinement), to the encapsulation of parallelism
on advanced computer architectures. The reuse of this work within Overture framework has estended from
Computational Biology at UC Davis, to the modeling and design of sails for America’s Cup Yacht Rac-
ing at Doyle (sp?), to the design of diesel engine simulations at Lawrence Livermore I\‘ational Laboratory
with Caterpillar Inc. Other frameworks have likely also received broad use spanning multiple research and
industrial disciplines and leveraging their support. The estream brea.dth of the different areas of esper-
tise represented by individual object-oriented frameworks has not been entirely offset by the performance

‘ISO/IEC 148821998 Cti standard as implemented by EDG

issues associated with high performance computing, particularly at national laboratories where high perfor-
mance within computational simulations is in greater focus (and the parallel computer architectures more
specialized, complex and obscure).

In looking at what has been learned from the use of object-oriented frameworks, it has been the extream
elegance of the powerful abstractions (grids encapsulating complex moving geometry, solvers encapsulating
adaptive mesh refinement, and array operations encapsulating parallelism, etc.) when layered with the
syntactic sugar represented by overloaded operators that has enticed framework and application developers
the most.

In contrast to the abstractions in an object-oriented framework, the C++ compiler ignores the rich
semantics embedded in these powerful abstractions and effectively filters their potential influence upon the
optimization of applications using such object-oriented frameworks. For example, within an array class
the semantics of the array abstractions may include complete evaluation of the rhs before assignment to
the lhs, array semantics; but the compiler can not see this and so cannot use this semantics to introduce
optimizations. The array class might enforce array semantics, but the compiler would never be sure that
loop optimizations could use such knowledge, the result is suboptimal performance. Within advanced cache
optimizations the lack of such seemingly detailed information can invalidate there use, dramatically effecting
the performance on cache based architectures.

ROSE represents a mechanism to capitalize on the semantics represented by abstractions implemented
by an object-oriented framework. ROSE uses this semantic information to define an automated mechanism
to introduction optimizations which FORTRAN and C compilers have insufficient semantic information to
introduce. Access to this additional semantic information, beyond that of the C or C++ language semantics
is the key reason why advanced transformations for cached based architectures can be automated. Such
cache transformations can out perform typical FORTRAN 77 and C compilers by factors of three to four
/cite[CacheOpt imization]. Serial optimizations are only half of the optimization potential, parallel object-
oriented frameworks define specific parallel semantics for their abstractions. Parallel optimizations are also
possible (for example, scheduling of communication), but inaccessible since the base language’s semantics
(for example, C++) does not include parallel semantics. Serial compilers can implement optimizations that
take advantage of parallel semantics that they know nothing about and can not see. ROSE provides a
mechanism to capture the original high level semantics introduced by the object-oriented framework and use
these to drive more sophisticated optimizations that those possible within the greatly restricted semantics
of the base language (C++, for example).

1.1 Object-Oriented Frameworks

The development of scientific simulations generally involves: 1) the definition of the problem 2) the specifica-
tion of the relevant physics 3) the selection of numerical approaches 4) the design of the application code 5)
the specification of the geometry upon which to run the simulation. A measurable percentage of application
are initially conceived of within restricted geometries (Cartesian coordinates or simple transformations of
Cartesian coordinates), but many or most practical applications involve some geometric complexity. De-
spite the emphasis on high performance computing the development of the grid generation consumes many
months compared the the execution time of the computations which take only days. The wide spread use
of simulations on complex geometries is limited by the availability and complexity for users to master such
techniques and the ability of current computational hardware to process such simulations.

Overture is an object-oriented simulation framework that addresses many aspects of the development of
complex simulations associated with industrially relevant applications. A current focus within the Overture
team is the simulation of diesel engines. Such engine simulations involve significant complexities, with com-
plex internal shapes and many moving parts. The time scales and relative size of features within the geometry
and the fluid flow require locally tailored grid resolution which demand adaptive mesh refinement numerical
methods. The complexity of tying these complexities together can not overshadow the requirements of high
performance on advanced computer architectures.

Figure 1: Example Overture application: flow simu!arion of moving valve n-ithin an engine in 2D and 3D. Such
simularions tie togerher numerous software complesities. The expression of such complex flow applications using
abstracrions represented nithin the Overture framework provides a rich opportunity for sophisticated optimizatioos:
but for the fact that the semantics of the framen-ark’s abstractions are ignored by the underlying C+-S compiler.
ROSE provides a mechanism to use the framexvork’s semantics to automate sophisticated optimizatiors.

1.2 What Problem ROSE Solves

The purpose of ROSE is to provide a mechanism to achieve high performance for scientific computations.
ROSE addresses the specific and ever changing requirements of current computer architectures by abstracting
the details associated n-ith performance (specific transformations) and separating them from the development
of the more general application. The right transformation on the wrong architecture would of course only
slow performance generally, so separating these as much as is reasonable provides a mechanisms to develop
scientific software that are portable. Using object oriented frameworks the development of the scientific
applications (such as those using Overture) is greatly simplified: ROSE addresses performance issues within
the use of such object-oriented frameworks. ROSE is not in any Kay specific to use with Overture but is
being use n-ith Overture to address provide optimizations cache based optimizations, these optimizations are
independent of Overture and can be applied to other frameworks and even C language applications directly
/footnoteThe use of ROSE with C applications as a mechanism to automate the introduction of cache
based transformations has not been the target of current work and would require either greater program
analysis rhat is likely possible today or some direct intervention by the application n-ritter to specify where
ROSE could apply the optimizations (transformations). This n-ork would expand the applicability of ROSE
orthogonally to the optimization of object-oriented frameworks..

Specific problems that ROSE addresses can include any compile time analysis or transformation, a short
list includes:

. Simple elegant interface, consistent across all machines

l Loop fusion of binary operators

l Loop fusion across statement (requires simple dependence analysis)

l Cache based transformations

l Temporal locality optimizations

0 compile-time performance metrics

1.3 Scope

ROSE applies broadly to all C++ object oriented frameworks, nothing in the design makes is specific to
A++/P++ or Overture directly. Since C is a subset of C++ it could be used more generally to introduce
specialized optimizations into C applications as well. Avoiding the use of the object-oriented framework
and the abstractions that it presents however complicates the specification of where optimizations can be
preformed. So while ROSE could work with C as a mechanism to introduce transformations the C program
application would have to specify in some way Fvhere optimizations would be done. The effect of avoiding
the object-oriented frameworks is to lose the abstractions that can drive the automated optimizations.
Applications of ROSE to other languages is clearly possible, but not within the scope of our current work.

ROSE provides optimizations through the introduction of transformations. The users that ROSE targets
are those developing object-oriented- frameworks, and not the users of those frameworks. =ipplication devel-
opers n-ould have no use for ROSE except to implement optimizations not implemented by the framework
n-ritter. Since ROSE is entirely optional, it does not change the semantics of the frarnexork in any Kay, it
only addresses performance optimizations.

1.4 Short Term Goals

The immediate goal of current xvork is to provide performance optimizations for Overture (and more specif-
ically the A++/P++ array class library used n-ithin Overture). Specific transformations currently being
worked on include simple binary operator elimination, simple spatial transformations for cache, loop fusion
and more sophisticated temporal transformations for cache.

2 How ROSE works

ROSE acts like a preprocessor; it does not introduce any language features, it accepts C-F+ source code
and outputs C++ code. Its use is by design optional so as not to interfere with with the object-oriented
framework. It is a mechanism to introduce optimizations only, adding language features using ROSE is
by design not possible. Internally within ROSE each transformation represents a single pass. Currently
we assume that all transformations are independent (mechanisms for staging of transformations u-ould be
more complex and may be represented in later work). MYthin the presentation of how ROSE works we will
consider only a single transformation, as an example we will consider the transformation of a simple 1D
array statement (but most of our presentation will be more abstract).

ROSE internally uses the Sage II source code restructurin g tool from University of Indiana and IS1
(Gannon and Keselman). Sage uses the Edison Design Group (EDG) C++ front end, and provides a public
interface to the internal (private) EDG representation. Essentially, Sage II implements the C++ grammar
as an object-oriented interface (each nonterminal is an object), the user’s C++ application is then internally
represented as a program tree (graph) consisting connected elements of the C++ grammar.

The specification of a transformation (optimization) within an arbitrary object-oriented framework con-
sists of tn-0 parts:

1. the specification of when it can be introduced, and

2. the specification of the transformation itself.

Alany other transformations proceed nearly identically except for the specification of the transformation
itself.

2.1 Specification of where to introduce optimizations

The specification of where to introduce a transformation typically requires the use of program analysis.
Simply put, program analysis is the discovery of how the application code (using the semantics of the
programming language) is using variables and language constructs (loops, conditionals, etc.). Much work has
been done on program analysis and within compilers it is quite sophisticated, but surprisingly little is possible
to fathom from an application using only the semantics of a low level language (C, C-t+, FORTRAN). In
general, the most complete program analysis occurs where the languages semantics is most restrictive. Clearly
the languages with the most restrictive semantics tend to complicate the expression of sophisticated scientific
applications and this is the basis of FORTRAN often out performing other more modern languages.

The basis for knowing when to introduce a transformation is to perform some sort of pattern matching.
Explicit pattern matching is not particularly practical nor sufficiently general, a more acceptable approach
is to define a grammar. All languages are defined using a grammar, a standard way to present a grammar
is to use Bachkus-Nour Form (BNF) notation”. An object-oriented framework also has a grammar and its
grammar can be simple to complex depending upon the framework. But since the development of an object-
oriented framework does not proceed along the same conventional lines as the development of a language,
few if any object-oriented frameworks have an explicit grammar (we present a representation of the grammar
for an array class separately).

Clearly C++ has a grammar, internally compilers use this grammar as part of the implementation of the
compiler and the internal representation of the application source at internal stages within the compilation
process (more than one grammar is often used). The access to the internal program representation is an
important part of ROSE. ROSE uses the Sage II source code restructuring program to provide access to the
program tree. Sage uses the EDG front end and separate agreements with EDG have permitted us access to
all EDG source. Sage II provides a public interface to the private EDG internal representation, providing a
object-oriented implementation of the C++ grammar used to define any C++ application. Sage permits the
editing of that internal representation and the unparsing of its representation back into .C++ source. The
object-oriented implementation of the C++ grammar (each terminal and nonterminal is a separate object,
etc.) provides the base level grammar within ROSE.

2.1.1 How The Grammar Is Defined

Since the C++ grammar is quite large (consisting of several hundred of elements) the C++ representation of
the program tree can be overwhelmingly complex. The direct identification of abstractions (as implemented
in C++) of framework abstractions is far too complex. To simplify the job a grammar is defined which
represents the object-oriented framework directly. Using ROSE with an arbitrary object-oriented framework
would require the specification of the grammar representing the targeted framework. This is done using a
conventional Extended BNF notation (a classic way to define grammars).

In the example of a transformation of array assignment statements two grammars will be defined. The
first is a grammar is defined to represent the array class. Space within this paper does not permit the
presentation of this grammar (it is available one the Overture web site separately). Figure x shows a small
part of the grammar representing the A++/P++ array class library (the Array Grammar), its complete
listing is available separately through the Overture web pages. This figure shows the use of the grammar
definition mechanism within ROSE which allows a grammar to be defined using Extended Bachus-Kour-
Form (EBNF) notation. This mechanism for specifying a grammar is particularly simple because it permits
conventional BNF notation to be used, the execution of this C++ code represent the grammar is sufficient
to build the code that is then compiled with ROSE to define the use of this grammar.

Additional grammars that are specific to each individual transformations can now be defined which use
the array grammar. Figure x shows the array assignment grammar.

More complex transformations (stencils, for example) require still higher level grammars that build on
top of this. Such example would be too complex for presentation within this paper.

2For more background see the Dragon Book

Granmar::NonTerminal ArrayExpression =
ArrayNumericExpression
I ArrayRelationalExpression
I ArrayLogicalExpression
I C-Expression
I ArrayOperand;

Figure 2: Example of product rule (in EBNF notation) for nonterminal of the array grammar using the mechanisms
for defining grammars within ROSE.

Grammer: :NonTerminal arrayoperator = arrayBinary0perator;
Grammer: :NonTerminal assignmentOperator = arraytype ‘I: :” “operator=”
Grammer::NonTerminal transformableExpression;
transformable-expression = trensf ormableExpression k operator & transf ormableExpression 1

arrayoperand arrayllperator arrayoperand 1 arrayoperand;
Grananer::NonTerminal lhs-operand = arrayoperand;
Granrmer::NonTerminal rhs,operand = transformable-expression;
Grammer::NonTerminal transform-statement = lhs-operand & assignmentOperator B rhs-operand;

Figure 3: Array .ksignment Grammar Production Rules: Example of product rules (in EBSF notation) for the
array assignment grummur using the mechanisms for defining grammars within ROSE.

2.1.2 How the grammar is used

1i-ithin ROSE the specification of the grammar is sufficient to generate code that ROSE then uses internally
to build the parser and the object oriented implementation of the grammar used to represent a program tree
using the associated grammar. Tens of thousands of lines of code can be automatically generated; greatly
simplifying the process of handling large grammars associated n-ith sophisticated object-oriented frame-xorks.
part of ROSE is the user interface which permits customization of the behavior of these implementations of
the grammar, permitting user defined code to be inserted into the implementations of the grammars. Current
attempts within this research are to automate as much of the generation of the grammars as possible.

The introduction of grammars provides a mechanism to separate different parts of the application code.
The array grammar is used to define array operations (statements, expressions, types; etc.). Sage II provides a
program tree represented by a graph of elements in the C++ grammar. This representation is not sufficiently
refined for our purposes and does not effectively differentiate parts of the program tree representing non-array
class code from parts of the program tree representing array class code (though clearly it is all C;+ code).
To further refine and synthesize the application code’s use of the array class the program tree is parsed using
the array class grammar, effectively filtering out all non-array class code from the C++ application.

As a rule, if a program tree can be parsed (without error) using a grammar then the program tree has
a representation in that grammar. More specific to the array class, if a part of an application code parses
using the array class grammar then it represents application code that uses the array class. This simple
mechanism is used to literally find the use of array class abstractions (array objects, operators, etc.) within
the application source. Once found we know only that array class abstractions have been located, nothing
more specific or specific enough to pinpoint where to introduce a transformation. Parsing the C++ grammar
into a representation of the application using the array class grammar builds a new program tree.

The specification of the additional grammar is required to pinpoint array assignment statements (for
esample) within the array class grammar representation of the program tree. The process of defining the
array-assignment grammar and parsing the array grammar program tree into an array-assignment grammar
program tree proceeds i-dentally as in the transition from the original C++ grammar (the Sage II program
tree). The program tree using the array grammar is parsed and a program tree using the array assignment
grammar is constructed.

\I’ith the application program’s representation in the array-assignment grammar it is clear that all array
assignment statements have been found, since by definition they were recognized by the array assignment
grammar. The use of still higher level grammars can be used to further refine (filter) the collection of array

assignment statements. Higher level grammars might include stencil grammars for example which would
pinpoint specific types of stencil operations for cache based transformations.

2.2 Specification of a Transformation

The specification of a transformation addresses what the optimization will be and completes the process of
defining an optimization once it is known where it will be introduced. The specification of the transformation
must be represented in multiple parts and these parts must be assembled depending upon the the context of
the original statement (in the case of an array assignment optimization the context can include the dimension,
number of operands, etc.; if this information is not represented in the grammar directly).

The specification of the transformation varies greatly in complexity, it is the program tree that is trans-
formed and the tree consists of many different elements of grammar, each is transformed separately. The
transformation of the program tree occurs as a transformation of the program tree associated with a higher
level grammar into a program tree associated with a lower level grammar.

For the case of a transformation of an array-assignment statement the transformation consists of a
transformation of the program tree associated with the array-assignment grammar into a program tree
associated n-ith the array grammar and then a second transformation of the program tree associated n-ith
the array grammar.

For each element of grammar within the program tree a transform function is defined (current attempts
are being made to automate the generation of these functions from the definition of the grammar (directly
from the specification of the transformation rules). This transformation is defined to be a map of the elements
of the higher level grammar into the lotier level grammar.

There are tn-o n-ays to specify the transformation of a terminal or non-terminal in a higher level grammar
into a Ion-er level grammar.

1. Hard coded Here the transformation is explicitly defined by supplementing the definition of that
element of the grammar. Space precludes an example: but required elemets are assembled explicitly
from the C++ grammar defined by the Sage II objects.

2. By example Here the transformation is separated into pieces and how the pieces are fix together is
defined explicitly.

Ilore mechanisms may be defined as research is done to more completely automate the specification of a
transformation from as simple a description as possible.

In the case of an assignment statement the transformation of the different elements of the grammar are
called recursively through the program tree to build a separate program tree representation n-ithin a lower
level grammar.

A grammar is defined by a collection of product rules, but the transformation of one grammar into
another is outside of what a common grammar can represent. So the transformation of a grammar into a
lower level grammar is defined by a separate set of transformation rules. These rules are dependent only
upon a given pair or grammars. Current research in ROSE is defining mechanism to automate the generation
of code which implements these rules.

Figure x shows the specification of the elements of the transformation, Figure y sh0K-s how these are
assembles at compile time.

Figure x shows how these elements of the transformation are assembled into code based on the details
of the statement being transformed. This code defined the transform membe function on for the arrayAs-
signmentstatement element of the grammar. Many detials are left to the reader since this paper is of
limited length.

As a final example, we present two tiny codes, one using the array class directly, and the other being the
output of ROSE.

2.3 Summary

The final result in ROSE is a mechanism that reads C++ application source code, recognizes arbitrary
abstractions and implements customized transformations that provide better performance. The mechanism

// Example of transformation specification (in this case for an array statement)

FIJNCTION~DEFINITION UNIQUE~PART~OF~TRANSFORMATION 0
I

/I This code is only required once for all the operands in the same scope
int GLOBAL-INDEX-NAME = 0;

)

FONCTION~DEFINITILlN LHS~PART~OF~TRANSFORMATION 0
t

// This is code that is required once for the Lbs operand
double* RESTRICT LHS~ARRAY~DATA~POINTER = LHS_ARRAY.getDataPointerO;

1

FIJNCTION~DEFINITION RHS~PART~OF~TRANSFORATION (int number0fRhsOperands)
t

LOOP(numberOfRhsOpermds)
t

// This is code that is required once for the Lbs operand
double+ RESTRICT RBS-ARRAY-DATA-POINTER = RBS-ARRAY.getDataF'ointerO;

1
)

FUNCTION~DEFINITION LOOP~PART~OF~TRANSFORHATION 0
I

// This code is required only once for this transformation
cons& int base-lD_0 = LHS-ARRAY.getBase (0);
cons3 int bound-lD_0 = LBS-ARRAY.getBound (0);
coast inr stride-lD_0 = LHS-ARRAY.getStride(O);
for (GLOBAL-INDEX-NAME = base-lD_0; GLOBAL-INDEX-NAKE <= bound-lD_0; GLOBAL-INDEX-NAME++)

t
// This code would be modified with the edited us.er inner loop statement
// The first statement will be replaced within the transformation process

// LHS~ARRAY~DATA~POINTER~ROSE_SUBSCRIPT~CO~~ATION~lD~GLOBAL~I~~~NA~,O,stride~lD~0~~ =
// RESJRRAY~DATA~POINTERCO1;

// It is in the transformation of the statement (called by ROSE recursively on
// the program tree associated with the highest level granrar) that specific
// transformations are introduced). Look at the specificarion of the transformtions
// of the gramar elements (at all levels of the gramar higherarchy).

TRANSFORED~STATEMENTO ;
1

)

Figure 4: i\rray Assi~ment Grammar Production Rules: &le of product rules (in EBSF notation) for the
anay assignment grammar using the mechanisms for defining gamma.rs within ROSE.

is powerful since it is fully programmable, can be coupled with dependence analysis and any other tradi-
tional program analysis mechanism to capitalize upon the surrounding context of the use of a framework’s
abstraction. In this way, it significantly more powerful than C++ template based mechanisms (expression
templates) which preform little more than text editing with no program analysis being possible, such methods
delegate all program analysis to runtime checks.

Within ROSE the optimization of abstractions within an object-oriented framework can be defined
through the specification of a grammar and a transformation. Some optimizations may be best introduced
using multiple grammars defined within a hierarchy. The example presented in this paper shows how an
array grammar is specified and how a grammar specific to the optimization of array assignment statements
(the array assignment grammar) is defined using that array grammar. Our present esperience has been
with such shallow grammar hierarchies, but it is clear that the mechanisms being developed are general
and can support the deeper hierarchies required for the specification of much more complex stencil specific
optimizations.

The specification of an optimization requires the definition of one or more grammars and the specifi-
cation of the transformation itself. The advantage of using a hierarchy of grammars is that higher level
grammars are greatly reduced in size (number of terminals and nonterminals) and corresponding complex-
ity. In addition multiple grammars defined above a common lower level grammar within the hierarchy can
leverage the defined transformations of the lower level grammar, simplifying the development of specialized
optimizations. This construction of a hierarchy of grammars supports the iterative refinement of increasingly

// Example of a transform member function
// Code to put the program tree fragments (after they are recognized
/I using om transformation specification grammar)

TransformationSpecificationStatementBlock transformSpecification;
TransformResult arrayAssignmantStatement::transformO

(
I/ Build storage for final transformation

TransformResult result;

TransformationSpecificationFunction transformMetaFunctionUnique = transformSpecification.get("UNI4UE_PART_OF_TRNSFORMATION");
transformMetaFunction = transformMetaFunctionUnique.edit ~"CLOBAL~INDEX~NAME","i");
result.add(transformMetaFunctionUnique.getBlockO);

TransformationSpecificationFunction transformMetaFunctionL.hs = transformSpecification.get("LHS_PART_OF_TRANSFORHATION");
transformMetaFuction = transformMetaFunctionLhs.edit ("LHS_ARRAY",variableNameCOl);
transformMet.aFunction = transformKetaFunctionLhs.edit ("LHS~ARRAY~DATA~POINTER".transformedVariableName[0l);
result.add(transformNetaFunctionLhs.getBlockO);

for (int i=O; i < numberOfRbsOperands; i++)
{

TransformationSpecificationFunction transformMetaFunctionRhs = transformSpecification.get("RBS_PART_OF_TRANSFORnATION");
transformMetaFunction = transformHetaFunctionHbs.edit ("RBS_ARRAY",variableNameCi+ll);
transformMetaFunction = transformMetaFunctionRhs.edit ("~S~ARRAY~DATA~POINTER",transformedVariableNameCi+1l~;
result.add(transformnetaFunctionRhs.getBlockO);

>

TransformationSpecificationFunction transformHetaFunctionLoop = transformSpecification.get("LOOP_PART_OF_~NSFORnATION");
transformKet.aFunction = transformHetaFunctionUnique.edit ("GLOBALJiDEX-NAME","i");
tsansformMetaFunction = transformMetaFunctionlhs.edit ("LHS_ARRAY",variableNameCOl);
result.add(transformMetaFunctionLoop.getBlock());

return result;
1

Figure 5: Array Assignment Grammar Production Rules: Example of product rules (in EBNF notation) for the
array assignment grummar using the mechanisms for defining grammars within ROSE.

specialized optimizations over time. An over-arching goal within ROSE has been to define a simple coherent
mechanism that permits the implementation of optimizations within arbitrary object-oriented frameworks
and to accomplish these optimizations in a few hours of work.

3 Conclusion

The mechanism presented within ROSE defines a general mechanism applicable to any object-oriented frame-
work. The framework’s development of powerful abstractions is not compromised by the inability of the
compiler to optimize them. It is likely still that case that using abstractions of appropriate granularity is
prudent in the design of object-oriented frameworks, but the interaction of abstractions of a framework can
be optimized without resorting to obscure C++ template tricks and and the mechanisms are fundamentally
more powerful. ROSE as a mechanism is more powerful because it permits the use of a full range of standard
program analysis techniques and because the transformations can capitalize upon the surrounding context.
This later point of understanding the surrounding context as part of the optimization is crucial to the de-
velopment of fusion over statements and sophisticated cache optimizations addressing spatial and temporal
locality within scientific computations.

The mechanisms within ROSE, since they are orthogonal and independent from the ‘framework, can be
retrofitted into existing frameworks for use with previously developed applications using those frameworks.

Lastly, ROSE preserves the intended elegance of the frameworks design by providing mechanisms for
the optimization of the interaction of any size abstraction expressed using the C++ languages overloaded
operators. Using the semantics of the framework’s abstractions more sophisticated (and higher performance)
optimizations are possible since knowledge of the framework’s semantics leads directly to significantly more
information and from that a greater level of optimization can follow.

#include "A++.h"

int main0

int size = 10;
double gamma = 2.0;
doubleArray ACsize);
doubleArray B(size);
Range I(1, size-l);
Range J(1, size-2);

A(I) = (B(I+l) + BCI-1) 1 * 2.0;

printf ("Program Terminated Normally! \n");
retu-n 0;

1

Figure 6: Example A++ code before processing using ROSE.

4 Bibliography

[BCHQ] Brown, D., Chesshire, G., Henshan;, 11-.: and Quinlan, D., “Oj.ERTURE: -An Object-Oriented
Software System for Solving Partial Differential Equations in Serial and Parallel Environments,” Published
in Proceedings of the SLAM Parallel Conference, Minneapolis, MY. hlarch, 1997

[BQj Balsara, D.: Quinlan, D., “Parallel Object-Oriented Adaptive Mesh Refinement,” Published in
Proceedings of the SIXlI Parallel Conference, hfinneapolis, &IX\;. hIarch, 1997

[PQ] Parsons: R.: Quinlan, D., “A++/P++ -4rray Classes for -4rchitecture Independent Finite Difference
Computations:” Proceedings of the Second Annual Object-Oriented Numerics Conference, Sunriver: Oregon.
April 1994.

[BLQ] Balsara, D., Lemke, M, Quinlan, D., “XIIR++, a C++ Object Oriented Class Library for
Parallel -4daptive Refinement Fluid Dynamics ilpplications, Proceedings of American Society of llechanical
Engineers, Winter Annual Meeting, Anaheim: C-4: Sol-ember B-13: Adaptive, hlultilevel and Hierarchical
Computational Strategies, A&ID-Vol. 137, pg. 413-433, 1992

[LQ2] Lemke: hI.: Quinlan, D., “P++, a C++ Virtual Shared Grids Based Programming Environment for
-Architecture-Independent Development of Structured Grid Applications”, COXP-1R/J‘APP V, September
1992: Lyon, France, Lecture Notes in Computer Science: Springer-Verlag, 1992.

#include <A++.h>

#4 %sstZ.C"
int main0

<
auto int size=lO;
auto double gamma=Z;
auto doubleArray ACsizef;

%9 Yest2.C"
auto doubleArray BCsize);

it10 "test2.C"
auto Range I(1,si.w - 2);

it11 "test2.C"
auto Range J(l.size - 2);

tt13 "test2.C"
I

// Transformation for: A(I) = BCI-1) + B(I+l);
int rose-index=O;
double 1, restrict A-rose-pointer = (A . getDataPointer)();
double * restrict B-rose-pointer = (B . getDataPointer)O;
const int base-lD-0 = (I . getBase)();
const int bound-lD_0 = (I . getBound)();
const int rose-stride = (A . getStride)(
const int rose-base = (B . get8ase)(O);
for(rose-index = base-lD_0; rose-index <= bound-lD_0; rose-index++)

I
A_rose_pointerCrose_indexl =

(B_rose_pointarC(rose_index + l)] + B_rose_pointer[(rose_index - i)]) * 2;
)

1

1249 "/usr/include/stdio.h"
printf(((const char *)"Program Terminated Normally! \n"));

#49 "test2.C"
return 0;

1

Figure 7: Example of output from processing of A++ code using ROSE.

